home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Power Programmierung
/
Power-Programmierung (Tewi)(1994).iso
/
magazine
/
nan_news
/
toolkit
/
gcd.prg
< prev
next >
Wrap
Text File
|
1991-08-15
|
3KB
|
95 lines
/*
* File......: GCD.PRG
* Author....: David Husnian
* Date......: $Date: 15 Aug 1991 23:03:40 $
* Revision..: $Revision: 1.2 $
* Log file..: $Logfile: E:/nanfor/src/gcd.prv $
*
* This is an original work by David Husnian and is placed in the
* public domain.
*
* Modification history:
* ---------------------
*
* $Log: E:/nanfor/src/gcd.prv $
*
* Rev 1.2 15 Aug 1991 23:03:40 GLENN
* Forest Belt proofread/edited/cleaned up doc
*
* Rev 1.1 14 Jun 1991 19:51:56 GLENN
* Minor edit to file header
*
* Rev 1.0 01 Apr 1991 01:01:26 GLENN
* Nanforum Toolkit
*
*/
/* $DOC$
* $FUNCNAME$
* FT_GCD()
* $CATEGORY$
* Math
* $ONELINER$
* Calculate greatest common divisor of two numbers
* $SYNTAX$
* FT_GCD( <nNumber1>, <nNumber2> ) -> nGCD
* $ARGUMENTS$
* <nNumber1> is the first number to find the GCD of.
*
* <nNumber2> is the second number to find the GCD of.
* $RETURNS$
* The greatest common divisor of the 2 numbers, or 0 if either is 0.
* $DESCRIPTION$
* This function calculates the greatest common divisor between 2 numbers,
* i.e., the largest number that will divide into both numbers evenly. It
* will return zero (0) if either number is zero.
* $EXAMPLES$
* ? FT_GCD(10,15) // Result: 5
* ? FT_GCD(108,54) // Result: 54
* ? FT_GCD(102,54) // Result: 6
* ? FT_GCD(111,17) // Result: 1
* $END$
*/
#command REPEAT ;
=> ;
DO WHILE .T.
#command UNTIL <Condition> ;
=> ;
IF <Condition> ; EXIT ; END ; END
#ifdef FT_TEST
FUNCTION MAIN( cNum1, cNum2 )
RETURN OUTSTD( STR(FT_GCD( val(cNum1), val(cNum2) )) + CHR(13) + CHR(10) )
#endif
FUNCTION FT_GCD(nNumber1, nNumber2)
LOCAL nHold1, ; // Temporarily Hold the Maximum Number
nHold2, ; // Temporarily Hold the Minimum Number
nResult // GCD
// Either Number Zero??
IF (nNumber1 == 0 .OR. nNumber2 == 0)
nResult := 0 // Yes, Can't Have a GCD
ELSE // No, Calculate the GCD
nHold1 := MAX(ABS(nNumber1), ABS(nNumber2))
nHold2 := MIN(ABS(nNumber1), ABS(nNumber2))
REPEAT
nResult := nHold1 % nHold2 // Get the Remainder
nHold1 := nHold2 // Which Makes a New Maximum Number
nHold2 := nResult // and it's the Minimum Number
UNTIL nResult <= 0
nResult := nHold1 // Maximum Number Should Be the Answer
ENDIF // nNumber1 == 0 or nNumber2 == 0
RETURN (nResult) // FT_GCD